
Research Statement Jialin Ding

I research machine learning and optimization techniques for data systems, with a focus on instance-
optimization, a new design paradigm for building data systems that can automatically self-optimize
to achieve the best performance for any specific application or use case.

Modern enterprises are collecting, analyzing, and capitalizing on exponentially increasing troves of data.
Therefore, the data systems that power the business-critical applications of these enterprises must continue
to push the boundaries of performance, in order to keep pace with the prolific growth of data volumes,
while simultaneously powering a wide variety of increasingly diverse use cases, ranging from maintaining
real-time inventory metrics for e-commerce companies to supporting business intelligence tools that enable
data-driven decision making.

With the end of Moore’s Law, advances in hardware can no longer keep pace with data growth. Therefore,
we must overcome performance bottlenecks through advancements in software and system design. However,
it is challenging to build data systems that support diverse use cases while simultaneously achieving high
performance. Widely-used general-purpose data systems achieve adequate performance across a wide
variety of use cases, but do not achieve optimal performance for any specific use case. On the other hand,
organizations can build custom-tailored data systems for achieving high performance on specific applications,
but this can take years of engineering effort and is too labor-intensive for all but the largest organizations.

Instance-optimized data systems are an emerging class of data systems that use machine learning
and optimization techniques to automatically achieve the best performance for each use case. In my research,
I have leveraged instance-optimization to introduce novel designs for database indexes and data storage
layouts that outperform existing state-of-the-art techniques by orders of magnitude. I also demonstrated
how to incorporate multiple instance-optimized database components into an end-to-end system that
outperforms a well-tuned commercial cloud-based analytics system by up to 3×. To prove that these ideas
work in practice, I have spent the past year productionizing my research at AWS, culminating in a new
instance-optimized feature called Multidimensional Data Layouts1 which has already been released to
customers in Amazon Redshift, a widely-used commercial database system. Looking towards the future, I
strive to continue conducting collaborative research at the intersection of machine learning and data systems
that balances innovation with practicality.

Instance-Optimization

Data Layouts. Workloads in analytic data systems are typically composed of queries that scan and
filter large amounts of data. An appropriately-configured data layout (i.e., the way in which data records
are ordered and clustered in physical storage) reduces the amount of I/O required for query processing by
enabling the system to avoid accessing data that is not relevant to the query’s filter. However, filters vary
widely in content and complexity, both between different workloads and within the same workload, so data
layouts must be reconfigured for every workload in order to achieve optimal performance.

Existing data layout techniques—such as sorting all data records in a table by a “sort key” column,
specialized multi-column sort orders, and multi-dimensional indexes—are difficult to configure and their
performance is inconsistent for different workloads. To address these shortcomings, I introduced three new
instance-optimized data layout techniques, which build upon each other:

• Flood [1] (SIGMOD ’20) is a multi-dimensional grid-based data layout, which is a generalization of
existing techniques such as multi-column (compound) sort keys and Z-order (interleaved) sort keys. We
use machine learning to automatically configure the grid layout to achieve the best performance for a
given dataset and workload, producing up to three orders of magnitude faster query runtime than existing
state-of-the-art layout techniques.

1https://aws.amazon.com/blogs/big-data/improve-performance-of-workloads-containing-repetitive-scan-

filters-with-multidimensional-data-layout-sort-keys-in-amazon-redshift/

https://aws.amazon.com/blogs/big-data/improve-performance-of-workloads-containing-repetitive-scan-filters-with-multidimensional-data-layout-sort-keys-in-amazon-redshift/
https://aws.amazon.com/blogs/big-data/improve-performance-of-workloads-containing-repetitive-scan-filters-with-multidimensional-data-layout-sort-keys-in-amazon-redshift/

Research Statement Jialin Ding

• Tsunami [2] (VLDB ’21) improves upon Flood by addressing two key weaknesses which are commonly
surfaced in real applications: the presence of correlated data (e.g., distance and price of a ride are correlated
in taxi data) and skewed query workloads (e.g., the workload filters more frequently for recent data
than stale data). Tsunami achieves high performance in these cases by introducing new tree-based data
structures to augment Flood’s existing grid-based layout, and unifying these layouts under a ML-based
optimization algorithm based on a new formal definition of query skew. Tsunami pushed performance
gains by a further order of magnitude compared to Flood.

• MTO [3] (SIGMOD ’21) is a Multi-Table Optimizer that extends instance-optimized data layouts to
cloud-based analytic applications, in which queries typically use diverse join patterns over multiple tables
and data is stored on disk or in cloud objects stores. MTO is the first instance-optimized storage layout
for jointly optimizing the storage layouts of all tables in disk-based or cloud-based multi-table datasets,
using the key idea of join-induced predicates, which are used to pass information through joins, to jointly
optimize the layout for all tables simultaneously. Through a collaboration with Microsoft Research, I
implemented MTO in Azure Synapse Analytics and showed that it achieves up to 75% reduction in
end-to-end query times compared to state-of-the-art data layout strategies.

Indexes. Flood, Tsunami, and MTO minimize I/O by adjusting the data layout. However, there are
situations in which either it is not possible to adjust the data layout or data layouts are ineffective because
the workload requires precise retrievals of individual data items without scanning large amounts of data. In
these situations, data systems often rely on auxiliary data structures called indexes to improve the speed of
data retrieval. One of the most fundamental database indexes is the B+ Tree, which is general-purpose and
has been used in commercial databases for many decades. However, the generality of the B+ Tree means
that it does not maximize performance for each use case.

The idea of learned indexes is to take advantage of knowledge of the specific dataset being indexed by
replacing the generic B+ Tree structure with a ML model that is trained over the indexed data distribution,
which speeds up retrievals over that specific dataset while also reducing the index’s storage overhead.
However, existing learned indexes have key limitations—such as lack of support for data updates and
persistent data—that hinder more widespread adoption. My research tackles these limitations and brings
learned indexes closer to reality:

• ALEX [4] (SIGMOD ’20) is one of the first updatable learned indexes. ALEX supports data modification
operations like inserts and updates while simultaneously improving read performance by introducing a
dynamic tree structure with online reorganization driven by a cost model. ALEX has been open-sourced2

and has garnered great interaction from the research community, having been cited or used as a state-
of-the-art baseline in over 50 publications from top-tier database conferences (SIGMOD, VLDB, ICDE),
as well as the developer community, with over 600 stars on Github.

• I collaborated with colleagues fromMicrosoft Research, Simon Fraser University, and CUHK on APEX [5]
(VLDB ’22), which builds on ALEX and is one of the first learned indexes to operate over not only
in-memory data, but also persistent data, specifically on persistent memory, which is becoming a favored
form of high-performance persistence in modern hardware.

Learned indexes have broad applications, even beyond data systems. I advised an undergraduate research
project on applying learned indexes to genomic sequencing, a $10 billion industry in which computational
efficiency is key. In collaboration with Intel Labs and the Broad Institute of MIT and Harvard, we introduced
LISA [6], which uses learned indexes to improve the performance of the FM-index, which is the state-of-the-art
technique widely deployed in genomics tools, by 10×.

2https://github.com/microsoft/ALEX

https://github.com/microsoft/ALEX

Research Statement Jialin Ding

Systems. While instance-optimized database components such as data layouts and learned indexes are
impressive in isolation, the real test for instance-optimization is how these techniques would perform in an
end-to-end system. I made two contributions on this front:

• SageDB [7] (VLDB ’23) is, to the best of our knowledge, the first end-to-end data system built with
instance-optimization as a foundational design principle. SageDB is a case study in synthesizing the
rich space of research on instance-optimized data systems, combining two carefully selected components:
(1) replicated data layouts and (2) partial materialized views, which are a generalization of traditional
materialized views with more degrees of freedom. Combined with a global optimization algorithm to
automatically and simultaneously configure both instance-optimized components, our SageDB prototype
outperforms a commercial cloud-based analytics system by up to 3× on end-to-end query workloads and
up to 250× on individual queries. The SageDB codebase has been licensed by Amazon.

• In an ongoing research project, I am collaborating with colleagues from MIT and Intel on Self-Organizing
Data Containers [8] (CIDR ’22), which synthesizes our work on instance-optimized replicated data layouts
into an open table format that enables high-performance data processing on data lakes.

From Ideas to Reality

While the research community has produced a rich body of work on instance-optimization over the past
years, the impact of instance-optimization on real production systems has been more muted. In collaboration
with Microsoft Research, I first had the opportunity to implement my data layouts research in a production
system as a prototype in Azure Synapse Analytics, achieving impressive performance results on standardized
benchmarks [3]. After I graduated from my PhD, I joined AWS as an applied scientist, with the goal of
fully productionizing my research. Building on my experiences with Azure Synapse, I have spent the past
year implementing and integrating a new instance-optimized feature in Redshift—Amazon’s cloud data
warehouse with tens of thousands of customers—called Multidimensional Data Layouts (MDDL) [9], which
has already been deployed to preview customers and will roll out as a general-availability feature in the
coming months. From the outset, I made data-driven decisions to strike a balance between design simplicity
and performance improvements while eschewing flashy but ultimately ineffective embellishments. Internal
telemetry indicates that across all customers, MDDL improves performance on 25% of tables, with over
2× improvement over existing data layouts for the top 5% of database instances.

My experience with implementing and deploying research ideas in real systems has solidified my research
agenda: to produce research that is not only novel and interesting, but is also grounded in reality and has
a bent towards practicality and simplicity. Systems research is at its core an applied field, and industry
adoption is the real measure of an idea’s staying power.

Future Directions

Instance-optimized systems is a rich and active area of research. In the short-term future, I aim to make
the field of instance-optimized data systems more mature—and continue to push for their adoption in real
systems—by addressing two key limitations in the existing literature:

Dynamic workloads and datasets. Instance-optimization is defined in the context of a certain use case,
which means that the system must undergo a potentially expensive re-optimization process when the use
case (i.e., the data and workload) changes. I plan to research re-optimization mechanisms and policies for
instance-optimized systems, which must consider not only the performance benefits of a new configuration
but also the cost of the re-optimization itself, while taking advantage of cost-saving opportunities such as
partial re-optimization when different components of the existing configuration are affected by use case
changes to different degrees.

Research Statement Jialin Ding

I also believe that instance-optimized systems must ultimately shift from using reactive policies, which
aim to quickly detect and respond to changes after they have already started to occur, to using proactive
policies, which predict how the data and workload will change in the future and directly optimize for that
future. For proactive techniques to be effective, we require more accurate forecasting of the future data and
workload. We also need to explore multi-step planning techniques, e.g., instead of optimizing a single data
layout for a single static dataset and workload, we plan a sequence of data layouts and times at which we
transition from each layout to the next. Thus, my work has significant overlap with reinforcement learning
and operational planning, and I would be eager to collaborate with experts in those areas.

Storage meets compute. SageDB [7] is currently an instance-optimized database system that incorpo-
rates multiple instance-optimized components from the data storage tier. I plan to pursue the outstanding
challenge of integrating an instance-optimized data storage tier with an instance-optimized query processing
tier, potentially in collaboration with colleagues at MIT and AWS. For example, we can incorporate the
extensive work on learned query optimizers, learned cardinality estimation, and learned cost models. The
main challenge will be to keep components from these two tiers synchronized: for example, if we optimize a
data layout under the assumption that it is used in conjunction with a learned optimizer, but the optimizer
subsequently changes due to re-optimization, then the data layout may become obsolete because the new
optimizer never decides to use it.

My research vision for the long-term future has two parts:

Beyond relational databases. The ideas of instance-optimization are applicable to other types of
database systems, such as NoSQL databases, graph databases, time-series databases, vector databases, or
even data lakes composed of data in diverse formats. This requires a new analysis of the most impactful
components to instance-optimize. For example, the way in which a graph is physically stored can be optimized
for the access patterns. An auto-tuner might decide between using a sparse or dense representation, but
an instance-optimized graph database might be able to materialize any design on the sparsity spectrum.
In general, any performance-sensitive component that is typically designed based on static heuristics and
best practices is an excellent candidate for instance-optimization.

We have the answer, but what is the question? The premise of instance-optimization is to automat-
ically maximize performance. So far, the community has typically assumed performance to refer to query
execution time, but the reality is more nuanced. Ultimately, users do not care about the performance of
queries; users care about the performance of their applications. Users may care only about the performance
of an application-critical subset of their workload, or they may only care that their performance hits a
certain threshold but do not care about any further improvement. Furthermore, in the modern cloud era,
users often care less about maximizing performance for a fixed amount of on-premise hardware and more
about minimizing cloud costs for a fixed amount of performance.

My vision is to develop instance-optimized systems in which users can intuitively and precisely express
their optimization goal. This will likely transcend typical low-level SLAs on query execution time and
move towards higher-level SLAs for end-to-end data pipelines. As a result, we must consider how instance-
optimization can be applied holistically, not only over a single data system, but an entire data mesh. This
expanded scope raises a rich array of research questions spanning systems (e.g., how to enforce fair scheduling
and work sharing among components and users in distributed and decentralized environments), programming
languages (e.g., formulating DSLs for expressing optimization goals, leveraging program synthesis to produce
more efficient data structures), and machine learning (e.g., incorporating new techniques in reinforcement
learning to achieve optimization goals, making instance-optimized systems robust to adversarial agents),
and I look forward to collaborating with current and future colleagues on these directions.

Research Statement Jialin Ding

[1] V. Nathan∗, J. Ding∗, M. Alizadeh, T. Kraska. “Learning Multi-dimensional Indexes.” SIGMOD 2020. (∗equal
contribution)

[2] J. Ding, V. Nathan, M. Alizadeh, T. Kraska. “Tsunami: A Learned Multi-dimensional Index for Correlated Data
and Skewed Workloads.” VLDB 2021.

[3] J. Ding, U.F. Minhas, B. Chandramouli, C. Wang, Y. Li, Y. Li, D. Kossmann, J. Gehrke, T. Kraska. “Instance-
Optimized Data Layouts for Cloud Analytics Workloads.” SIGMOD 2021.

[4] J. Ding, U.F. Minhas, J. Yu, C. Wang, J. Do, H. Zhang, Y. Li, B. Chandramouli, J. Gehrke, D. Kossmann, D.
Lomet, T. Kraska. “ALEX: An Updatable Adapative Learned Index.” SIGMOD 2020.

[5] B. Lu, J. Ding, E. Lo, U.F. Minhas, T. Wang. “APEX: A High-Performance Learned Index on Persistent Memory.”
VLDB 2022.

[6] D. Ho, J. Ding, S. Misra, N. Tatbul, V. Nathan, V. Md, T. Kraska. “LISA: Towards Learned DNA Sequence
Search.” System for ML Workshop at NeurIPS 2019.

[7] J. Ding, R. Marcus, A. Kipf, V. Nathan, A. Nrusimha, K. Vaidya, A. Renen, T. Kraska. “SageDB: An Instance-
optimized Data Analytics System.” VLDB 2023.

[8] S. Madden, J. Ding, T. Kraska, S. Sudhir, D. Cohen, T. Mattson, N. Tatbul. “Self-Organizing Data Containers.”
CIDR 2022.

[9] J. Ding, et al. “Automated Multidimensional Data Layouts in Amazon Redshift.” Under submission to SIGMOD
2024 Industrial Track.

